Forecasting Method for Grouped Time Series with the Use of k-Means Algorithm

نویسندگان

  • N. N. Astakhova
  • L. A. Demidova
  • E. V. Nikulchev
چکیده

This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract The paper is focused on the forecasting method for time series groups with the use of algorithms for cluster analysis. K-means algorithm is suggested to be a basic one for clustering. The coordinates of the centers of clusters have been put in correspondence with summarizing time series data – the centroids of the clusters. A description of time series, the centroids of the clusters, is implemented with the use of forecasting models. They are based on strict binary trees and a modified clonal selection algorithm. With the help of such forecasting models, the possibility of forming analytic dependences is shown. It is suggested to use a common forecasting model, which is constructed for time series-the centroid of the cluster, in 4814 Nadezhda N. Astakhova et al. forecasting the private (individual) time series in the cluster. The promising application of the suggested method for grouped time series forecasting is demonstrated .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combination of Transformed-means Clustering and Neural Networks for Short-Term Solar Radiation Forecasting

In order to provide an efficient conversion and utilization of solar power, solar radiation datashould be measured continuously and accurately over the long-term period. However, the measurement ofsolar radiation is not available to all countries in the world due to some technical and fiscal limitations. Hence,several studies were proposed in the literature to find mathematical and physical mod...

متن کامل

Time Variant Fuzzy Time Series Approach for Forecasting Using Particle Swarm Optimization

  Fuzzy time series have been developed during the last decade to improve the forecast accuracy. Many algorithms have been applied in this approach of forecasting such as high order time invariant fuzzy time series. In this paper, we present a hybrid algorithm to deal with the forecasting problem based on time variant fuzzy time series and particle swarm optimization algorithm, as a highly effi...

متن کامل

A NEW APPROACH BASED ON OPTIMIZATION OF RATIO FOR SEASONAL FUZZY TIME SERIES

In recent years, many studies have been done on forecasting fuzzy time series. First-order fuzzy time series forecasting methods with first-order lagged variables and high-order fuzzy time series forecasting methods with consecutive lagged variables constitute the considerable part of these studies. However, these methods are not effective in forecasting fuzzy time series which contain seasonal...

متن کامل

Proposing an approach to calculate headway intervals to improve bus fleet scheduling using a data mining algorithm

The growth of AVL (Automatic Vehicle Location) systems leads to huge amount of data about different parts of bus fleet (buses, stations, passenger, etc.) which is very useful to improve bus fleet efficiency. In addition, by processing fleet and passengers’ historical data it is possible to detect passenger’s behavioral patterns in different parts of the day and to use it in order to improve fle...

متن کامل

Some New Methods for Prediction of Time Series by Wavelets

Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1509.04705  شماره 

صفحات  -

تاریخ انتشار 2015